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AbstraeG-Approximate theoretical solutions have been obtained for laminar flow in a conduit with 
wavy moving boundaries. The results predict the data of Laird quite well and demonstrate that the 
oscillation of the boundary contributes to the apparent increased friction. This suggests that studies 
of the interface in two phase flow concern themselves not only with the wave profiles but with the wave 
frequency as well. 

The effect of a moving boundary in turbulent flow is shown to depend on the relative magnitude of 
the random fluctuation due to turbulence and the periodic fluctuation induced by themoving boundary. 

Experimental equipment is described in which turbulent intensity measurements were made across a 
wall oscillating with a standing wave having a length of 2 in and an amplitude of +0.025. Even with 
this large wavelength and low amplitude, the oscillating wall caused increased apparent turbulent shear 
stress. 

Because analytical solution of the equations of motion are not possible, an extension of the pheno- 
menological method to the case of moving walls is outlined. 
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NOMENCLATURE 

R+; 
maximum deviation of radius from 
R (see Fig. 7); 
numerical constant in equation (18a); 
frequency; 
energy dissipated due to friction for 
flow across a rough surface; 
energy dissipated due to friction for 
flow across a smooth surface; 
friction factor for moving wall; 
friction factor for stationary wall; 
constant in Newton’s second law; 
acceleration of gravity; 
coordinate in direction of gravity; 

27, t?, @, time average velocities in coordinate 
directions; 

d,, i& time average velocities at the wall; 
u’, v’, w’, fluctuating velocities in coordinate 

u+, 

%vg, 

V’ to) 

WA, 

x, 
Y+, 

directions; 
dimensionless velocity parameter, 
t.i/(TlJ gelp)l’2; 
time average velocity, averaged over 
the flow area; 
fluctuating velocity at wall; 
work required to form surface area; 
axial coordinate; 
dimensionless distance parameter, 

l/2 y 
_ 
Y’ 

. 2T 
wave numner = -; 

A 
numerical constant in equation (18a) ; 
damping constant [see equation (IO)]; 
time average local pressure; 
radius on non-oscillating wall (see 
Fig. 7); 
Reynolds number ; 
radial coordinate; 
time, 
instantaneous velocity in coordinate 
directions ; 

Greek symbols 
% numerical constant in equation (18b); 
CR, eddy viscosity due to random turbu- 

lent fluctuations; 
93 eddy viscosity due to periodic fluctua- 

tions induced by wall motion; 
4 wavelength; 
V, kinematic viscosity; 
PV density; 
70, wall shear stress ; 
w, angular frequency = 2rr F. 
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INTRODUCTION 

THE SIMULTANEOUS flow of gas and liquid in a 
conduit is accompanied by rates of momen- 
tum transfer (and frictional pressure drop) which 
are considerably higher than experienced 
when gas flows alone. In recent years consider- 
able effort has been devoted to explaining these 
higher transport rates. A few of the many 
examples can be found in references [l-3]. A 
survey of these approaches appears in reference 
[4]. The essence of the problem is to find a model 
describing the mechanism which is physically 
realistic and which is not so complex as to 
render the mathematics intractable. 

SOME POSSIBLE MECHANISMS 

Two phase flow is characterized by the presence 
of an interface. Except for bubble flow at 
low gas rates and completely dispersed liquid 
flow at very high gas rates, these interfaces are 
of substantial continuous area and are covered 
by waves. Figure 1 shows the surface of a liquid 
film in the presence of a very low countercurrent 
gas flow rate relative to the liquid surface. This 
surface is tremendously complex and experi- 
mental observations [5, 61, reveal that with 
strong concurrent gas flows the complexity 
increases. Now we need to determine the mech- 
anism(s) by which the interface makes its 
influence known to the gas phase. Several 
possibilities exist, some or all of which may act 
simultaneously. It is of interest to examine a 
number of these, looking at each as if it was 
acting alone. 

The gas does work on the interjbce to form surface 
Figure 2 demonstrates this mechanism. If the 

mechanical energy balance is applied to the gas 
flowing across a solid and liquid surface, respec- 
tively, the two equations shown in Fig. 2 are 
obtained. For equivalent conditions of kinetic 
and potential energy changes the measured 
pressure drop for flow across the fluid interface 
will be larger by the amount of work done by the 
gas to maintain the wave motion, even if it is 
assumed that the frictional dissipation across the 
liquid and the solid is the same. There is at 
present no way to separate the work and friction 
terms experimentally; thus, when experimental 
pressure drop is used to calculate friction. a 

WA :: nA 

FIG. 2. Mechanical energy balance for flow across solid 
and fluid interfaces. 

higher apparent friction loss is obtained. Should 
this be an important mechanism, then an under- 
standing of the higher momentum losses must 
come about by experimental and analytical 
studies of interfacial surface renewal rates and 
the way in which flow rate, fluid properties and 
conduit geometry influence these rates. 

If one uses experimental pressure drop data 
for two phase ilow and at equivalent gas rates 
calculates the single phase pressure drop, it ii 
possible to estimate the magnitude of the work 
term and explore its reasonableness. Such calcu- 
lations show that, in order to account for the 
higher pressure drop by a work mechanism, it 
would be necessary that the interfacial surface 
be renewed 500 to 1000 times per second. 
an unreasonably high rate. Thus it is necessar! 
to conclude that the energy required to form 
surface cannot possibly make a major contribu- 
tion to the apparent increased friction in two 
phase flow. 

The liquid interface appears as n rough solid wail 
to the moving gas 

This mechanism is demonstrated in Fig. 3. 
Assume that the liquid could be solidified in such 
a way that the interfacial solid roughness is 
identical in shape to the wave profile on the 
surface of the liquid. Since it is known that flow 
across rough surfaces is accompanied by higher 
frictional energy loss than flow across smooth 
ones, the measured pressure drops (as given by 
the mechanical energy balance in Fig. 3) will be 
higher. Should this model be a valid one, then 
it is necessary to concentrate on a study of the 



FIG. 1. Wave motion on a vertical film surface. 
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FIG. 3. Mechanical energy balance for flow across solid 
smooth and solid rough interfaces. 

interfacial profile. Then this profile can be 
duplicated in solid surfaces and the influence 
of the roughness on increased friction studied in 
single phase experiments, a much simpler experi- 
mental medium. 

The form drag due to the waves undoubtedly 
contributes significantly to the increased pressure 
drop. However, several studies [7, 81, have 
attempted to characterize the interface by an 
equivalent roughness. While the results of any 
one experiment can be used to calculate an 
equivalent roughness for that condition, it has 
not been possible to generalize this approach 
to predict results at other conditions where the 
interfacial roughness appeared essentially the 
same. This suggests that the roughness heights 
alone are not sufficient. 

Waves on the interface cause velocity fluctuations 
in the gas phase normal to flow which change 
the shear stress 

Figure 4 illustrates this mechanism. The 
equation shown is the two dimensional form of 

Flow 

L -I 

Solid Flud - - 
y=o cw= 0 y=o I?###0 

Tw= 0 rw+ 0 

FIG. 4. Boundary conditions in the equation of motion 
for flow across smooth and wavy moving surfaces. 

the Navier Stokes equation. (While this equation 
for laminar flow is included for illustrative pur- 
poses, the reasoning applies as well to turbulent 
flow, as will be shown below.) When the gas 
flows across a non-moving solid boundary (the 
horizontal solid line), at the boundary the time 
average velocity in the direction of flow at the 
wall, Pw, and the time average velocity normal 
to the mean flow at the wall, &,, are both zero. 
Now consider a wavy fluid interface. The solid 
wavy line represents the fluid interface at one 
instant of time and the dotted wavy line is the 
same interface an instant later after the wave has 
travelled along the surface. For this case the 
velocities, C, and Bw, are now not zero and 
depend on the degree of oscillation of the inter- 
face. One can expect the equations of motion 
to predict a different value for pressure drop 
when these boundary conditions are not zero 
(two phase flow) than when they are zero (single 
phase flow). 

There is interesting experimental evidence 
that this is a significant mechanism. In 1954, 
Laird [9] constructed an apparatus in which he 
pumped water in laminar flow through a flexible 
tube and imposed oscillations on the wall at a 
number of frequencies, amplitudes and wave- 
lengths. A schematic diagram of the Laird 
equipment is shown in Fig. 5. The wall was 
oscillated between positions shown as solid and 

. H---N r- ----- m -__-- 

Flow 

FIG. 5. Laird’s oscillating tube wall. 

dotted, respectively, while liquid flowed as 
shown. Typical experimental results are shown 
in Fig. 6. It is clear that the oscillation of the wall 
had a marked effect on the friction. Laird pre- 
sented no theoretical analysis for these observa- 
tions. This reasoning and Laird’s data suggests 
that before we can understand the effect of the 
interface on pressure drop we must study not 
only the profile but the oscillation of the inter- 
face as well. 
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FIG. 6. Typical experimental results of Lab-d. 

OBJECTIVES OF THIS STUDY From (1) and (4) we also get 

In this paper we will present an analysis which 
explains the Laird data, thus demonstrating that, 
at least in laminar flow, mechanism c, discussed 
above is important. This analysis is then extended 
to turbulent flow and the factors which must be 
determined experimentally to complete the 
understanding are evolved. The experimental 
equipment designed and constructed to explore 
this effect for turbulent flow is discussed and 
preliminary experimental results presented. 

If we consider the case where L’ is small, then 
from the equation of continuity iU/Z.x is also 
small and 8%/8x*, 8(rzE)/iir are negligible com- 
pared to ii‘G/W. Taking all this into account. 
equations (3) and (4) can be simplified to: 

LAMINAR FLOW IN A TUBE WITH WALLS 
OSCILLATING AS AXISYMMETRIC STANDING 

WAVES 

Assume that, due to the oscillation of the wall, 
fluctuating velocity components are induced in 
the axial and radial directions. The instantaneous 

velocity components 
can be expressed as 

I/ 

I’ 

H’ 

U, 6, ~5 are mean values, and u’, l.‘, ~2’ are the 
oscillating components. In the equations which 
follow, x is the axial and r the radial coordinate. 

We assume that w = 0 and that the oscillation 
of the wall does not induce fluctuation in the 
circumferential direction so that E” ~= 0. Sub- 
stituting equation (1) into the Navier-Stokes 
equations in cylindrical coordinates and taking 
time averages gives : 

(4) 
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In these equations, there exist more unknowns. 
i.e. p, ii, P, G, than are equations; i.e. [5, 6,7]. 
It is necessary to seek further relations in order to 
solve the problem. We accomplish this by first 
finding an expression for the velocity fluctuation 
at the oscillating boundary, U& and then suggest- 
ing a manner in which this is damped as it pro- 
gresses into the fluid. 

FIG. 7. Coordinates of the wave. 

Consider the system as shown in Fig. 7. The 
oscillating wall of the tube can be described by 

r0 = R + a0 cos kx sin wt (8) 

At the wall the component of fluctuating velocity 
in the radial direction can be obtained by differ- 
entiating equation (8). 

ar, 
v~=t=aowcoskxcoswt (9) 

It is likely that this displacement damps in some 
manner as the disturbance approaches the center 
of the tube. The damping equation assumed is 
given by (10). 

r It 
v’= - 0 R 

~1, = rn A,, w cos kx cos wt (10) 

where A = R-“. With this equation it is possible 
to find the product rv’ and its r derivative and 
so, from equation (5), obtain an equation for 
local velocity fluctuation, u’, as a function of 
the two position variables and time. 

A 
u’ = - (n + 1) -P-l waO sin kx 

k 
cos wt + Cl(r) (11) 

The constant of integration, Cl(r) can be found 
from the condition, at x = 0, n/k, 2p/k, . . . 
U’ = 0, therefore Cl(r) = 0 

U’ = - (n + 1) i m-l waO sin kx cos wt (12) 

From these equations the time average of the two 

fluctuating terms which appear in equation (6) 
can be calculated: 

(n+l) a(ru’v’) _ 
ar - ___ A2 ~2 ai rznel sin 2kx 

2k 
(13) 

;T _ (n + 1)2 
___ AZ ~2 a,2 sin (2kx) r2n-2 

2k (14) 

Substituting equations (13) and (14) into 
equation (6) gives, after integration with respect 
to r: 

i ap 
fj~-~~;(@-y2)- 

(a A2 ti2 at (R2n - r2a) sin 2kx (15) 

For this integration suitable boundary con- 
ditions are: at r = 0, dzi/dr = 0 for all values of 
x and at r = R, d = 0 for all values of x. 

Equation (15) then gives the distribution of 
time average velocity radially. The average 
velocity over the tube and the pressure gradient 
related to this average is: 

1 R 
Uavg = -_ 

TR2 s 
,-j2rrrdr=-!?~- 

8p ax 
0 

A2 w2 a2 
-----z R2n sin 2kx 

8nkv 

The maximum value of - dp/dx is : 

09 a2 

8vkn EiVg (16) 

For stationary smooth walls 

dp 0 8~ 4vg - - =- 
ax 8 R2 

Therefore the ratio of the friction factors of the 
moving to the smooth wall becomes : 

fm - @P/ax)m 
fs= -(ap/ax)s = ’ + 8v;::,, = 

(17) 

Equation (17) would enable us to calculate the 
friction factor for laminar flow inside oscillating 
tubes if n was known. 
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From equation (10) it is seen that n is a 
quantity describing the damping of the fluctuation 
induced by the wall motion. As n increases, the 
wall fluctuation is suppressed more rapidly. 
Therefore n is smaller for larger amplitude and 
larger frequency. Also n would be greater for 
larger kinematic viscosity or smaller Reynolds 
number. The calculation of II for a number of 
conditions of Laird’s data shows that these 
qualitative observations are valid and the 
principal variables which determine II are: 

11 : +(Re, F, uO, R. A) 

It is possible to form a number of characteristic 
dimensionless groups which include the variables. 
These include 

Fa% X R Fa,,R FR2 

v ’ uo’ a()) * ) -1-r -. Re, i 

A study of these groups in relation to the Laird 
data suggests they combine in the form 

(Isa) 

This gives, when substituted into equation (17) 

Equation (18b) shows that the friction factors 
for moving and stationary boundaries are 
related through the frequency, displacement 
amplitude and non-oscillating radius, combined 
in a dimensionless oscillation Reynolds number. 
It is of interest to note that, expressed in log 
form : 

log.& = log ‘(64 + 64 E 
i 

exp [nz~~~~~ - log Re 

this equation predicts a log linear friction factor 
Reynolds number with a slope of minus one. 
Thus the fm vs. Re curves should be parallel to 
and displaced from the single phase curve, 
exactly as seen in the Laird data, Fig. 6. 

When the Laird data at minimum displacement 
value, aojR = O-043, are used to evaluate the 

constants E and m and then equation (18bl 
is used to predict the results for all of the Lairh 
data, the results shown in Fig. 8 are obtained, 
The solid lines represent the prediction of the 
theoretical equation. The points represent the 
experimental data. Agreement is quite satis- 
factory. 

-: I / 

rreque--y -* s ,. q j $ j -y r, 

Fro. 8. Comparison of theory-(solid lines) with data of 
Laird-(points). 

TURBULENT FLOW ACROSS A WAVY 

MOVING BOUNDARY 

Theory 
The mechanism of momentum transfer and 

friction for turbulent flow across plane, non- 
moving boundaries has, as yet, not yielded to 
rigorous analysis. Because of the impossibility 
of solving the Reynolds equations without 
added independent equations to describe the 
turbulent shear stress, the most fruitful 
approaches have been phenomenological ones. 
Recently, Konobeev and Zhavaronov [lo] 
applied simplified turbulent models to flow 
across stationary rough surfaces with good 
success. It is apparent that the case of a moving 
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boundary would be of significantly increased 
complexity. 

One way to view the behavior of the fluid is 
to assume that the instantaneous velocity can 
be expressed in terms of a time average value, 
a random fluctuation due to turbulence and a 
periodic fluctuation due to the wall oscillation. 

u = ti: + 24’ + 24” 

v = 27 + v’ + 21” 

w = * + w’ + w” (19) 

If these definitions are substituted into the 
Navier-Stokes equations (following Reynolds) 
and time averages taken, then equations for the 
oscillating wall case can be developed. For 
steady conditions and negligible acceleration, 
the x direction equation becomes: 

afl F ai72 
o=-~++v2d-P ax, 

-+ 

a(X) 
- ay + 

&7i7) I [ 
au”2 &T a(iiT) 

- -P h ax+F+-y I 

In arriving at equation (20) it was assumed that 
there is zero correlation between any of the 
random and periodic terms, an assumption that 
seems completely justified in view of the com- 
pletely different nature of the two fluctuations. 

In the three dimensional case, then, each 
equation has three stress terms due to the periodic 
component in addition to the usual three 
turbulent stress terms. While it is clear that no 
serious attempt need be made to solve these 
questions, it can be seen that the movement of 
the wall is important only to the extent that this 
motion induces periodic fluctuations which are 
of the order of (or larger than) the random 
fluctuations. 

Experimental equipment 
In order to make a direct measurement of 

relative magnitude of the periodic and turbulent 
fluctuations, an oscillating wall channel shown 
schematically in Fig. 9 was constructed. This 
channel has the dimensions of 18 in by 1.5 in by 
5.5 ft. The top and three sides were made of 
clear plastic and the bottom surface was formed 

Channel top plastic, 

tom 
t 

Connecting plates 

Side view ‘Special beamgs 

Flow 

FIG. 9. Schematic views of the oscillating wall channel. 
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by a rubber sheet. To the bottom surface 52 
aluminum plates were glued 1 in apart. These 
connecting plates were attached to a connect- 
ing rod using specially constructed bearings. 
The camshaft was driven by a $ h.p. motor 
through a pulley system and an electrical variable 
speed drive. The camshaft was especially 
fabricated to give a maximum wave amplitude of 
0.025 in. This system thus generated a standing 
wave with a wavelength of 2 in, a wave amplitude 
of 0.025 in and an oscillation frequency varying 
from zero (no cam rotation) to 1200 rev/min. 
Air was provided by a rotary compressor and 
after being filtered and metered, flowed into a 6 ft 
entrance section, identical in all respects to the 
test section except that the rubber surface was 
replaced by a solid plastic sheet similar to the 
other walls. Turbulence measurements were 
made with a Flow Corporation constant current 
hot wire anemometer, Model HWB-2. Readings 
of turbulence intensity and cross correlations 
were made on a true random signal voltmeter 
designed for 16 s averaging of the signal. 
Additional details of the equipment, the measur- 
ing technique and preliminary data appear in 
reference 11. 

Typical experimental results 
Figure 10 shows the measured relative turbu- 

lent intensities for a stationary wall with no 
fixed deflection and for a wall oscillating at 800 
cycles/s. The effect is small but distinct and 
reproducible. For these experiments the gas 
Reynolds number was approximately 20 000. 
Equipment modifications are now under way 
to permit measurements for smaller wavelengths 

FIG. IO. Distribution of turbulence intensity. 

and larger amplitudes, conditions more nearly 
representing liquid surfaces in two phase flow. 

It thus appears that the movement of the wall 
induces added stress in the turbulent stream 
which is of the order of the random turbulent 
stresses themselves. In the experiments reported 
here this periodic contribution was small. 
However, as wavelength of the surface is 
decreased and wave amplitude increased. these 
effects can be expected to be more significant. 

A phenomenological approach 
The problem of solving the Reynolds equations 

can be approached phenomenologically by 
assuming the existence of an eddy diffusion 
coefficient for the periodic contribution to shear 
similar to that used for the random fluctuation. 
The one dimensional momentum equation can 
then be written as 

Here ER is the random contribution to the eddy 
viscosity, while cP is the periodic term, It seems 
reasonable to assume that the turbulent term 
is unaffected by the wall motion (there being no 
correlation between random and periodic modes) 
and thus it should be possible to use existing 
relationships that have proved satisfactory. For 
the region near the wall. Deissler [I 21 has 
suggested a useful equation 

where n is a constant determined from experi- 
ment. 

In the presence of wall oscillations the total 
eddy viscosity, ET, could be written as: 

If it is further assumed that the effects of the 
oscillations are most significant near the wall 
and that the major effect is to displace the 
velocity distribution curve due to its effect at 
the boundary, cP can be considered constant 
and a modified Deissler expression for velocity 
distribution near the wall can be obtained. 
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2. J. M. C~ENOWETH and M. W. MARTIN, Petrol Ref 
34, 151 (1955). 

Now it remains to determine from experimental 

3. C. J. HOOGENDOORN, Chem. Engng Sci. 9,205 (1959). 
4. A. E. DLJKLER and M. WICKS, Modern Chemical 

Engineering, Vol. I, chapt. 8. Reinhold, New York 
(1963). 

5. T. J. HANRATTY and J. M. ENGIN, J. Amer. Inst. 
Chem. Engrs 3,299 (1957). 

6. N. H. TAYLOR and G. F. HEWITT, AERE Report 
39-52 (1962). 

data the term, cp, and how the wall motion 
influences the magnitude of this quantity. 
Experimental measurements of this type are now 
underway. 
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R&urn&Des solutions thboriques approchbes ont &5 obenues pour l’&oulement laminaire dans une 
conduite avec des parois en mouvement ondulatoire. Les rksultats prevoient trL?s bien les r&ultats 
expbimentaux de Laird et demontrent que l’oscillation de la paroi contribue & l’augmentation 
apparente du frottement. Ceci suggkre que les ttudes de l’interface da.ns Ncoulement diphasique sont 
concern&s non seulement par les profils d’onde mais Cgalement par la frkquence de l’onde. 

On montre que l’effet d’une front&e mobile en 6coulement turbulent depend de la grandeur relative 
de la fluctuation aleatoire due B la turbulence et de la fluctuation pCriodique provoqu&e par la fron- 
t&e mobile. 

On decrit 1’6quipement expCrimenta1 avec lequel les mesures d’intensite de turbulence ont Bte 
faites de long d’une paroi oscillante avec une onde stationnaire de longueur d’onde &gale g 5 cm et 
d’amplitude Cgale ?I 0,625 mm. M&me avec cette grande longueur d’onde et cette faible amplitude, la 
paroi oscillante causait une augmentation de la contrainte de cisaillement turbulente apparente. 

Parce que la solution analytique des Cquations du mouvement n’est pas possible, on a Cbauche une 
extension de la mkthode ph&om&ologique au cas des parois mobiles. 

Zusammenf&ung-Fiir laminare Striimung mit einer sich fortbewegenden Grenzlinie in einer Rohr- 
leitung erhielt man theoretische NiihenmgslGsungen. Die Ergebnisse besttitigen die Werte von Laird 
sehr gut und zeigen, dass die Schwingungen der Grenzlinie zur offensichtlich erhShten Reibung 
beitragen. Dies legt nahe, dass sich Studien an einer Trennfllche in einer ZweiphasenstrGmung nicht 
nur mit dem Profil der Welle, sondern such mit ihrer Frequenz zu befassen haben. 

Die Wirkung einer sich bewegenden Grenzlinie in turbulenter Striimung hlngt, wie gezeigt wird, 
von der relativen G&se der zufglligen Anderung in einem Masse ab, das der Turbulenz und der 
periodischen Schwankung, hervorgerufen von der sich bewegenden Grenzlinie, entspricht. 

Die experimentelle Vorrichtung, in der Messungen der TurbulenzstPrke l%ngs einer Wand aus- 
gefiihrt werden, die wie eine stehende Welle von 5,08 cm Lange und +0,0635 cm Amplitude schwingt, 
wird beschrieben. Sogar bei dieser grossen Wellenliinge under der niedrigen Amplitude verursachte 
die schwingende Wand eine offensichlich turbulente, erhiihte Scherbeanspruchung. Weil eine ana- 
lytische Ltisung der Bewegungsgleichungen nicht mtiglich ist, wird eine Erweiterung der phtincmeno- 

logischen Methode fiir den Fall sich bewegender Wtinde umrissen. 

AnaoTaqrrJr-RonyseHb npa6nmuenHbIe TeopeTxqecHEie pemeHmcI ypaaHeHnti ~nfi JIamnHap- 
HOP0 nOTOHa B Typ6e C BOJlHHCThIMEl nOABHH(HhlMH CTeHKaMM. Pe3yJfbTaTbI peIIIeH&&t nOaT- 
BepAaJltr AaHHble &?apAa H nOKa3aJIII, YTO KOne6aKne CTeHKM CnOCO6cTByBT OqeBIlAHOMy 
yBBJlH~eHEII0 COnpOTIIBJleHHfI. II03T0~y Kccne~oBaKMs rpaKHqbI paap(ena B nByx@asKom 
nOTOKe OXBaTbIBaIOT He TOJlbKO BOJIHOBbIe npO$JnJIH, HO H BOJIHOBYIO WCTOTJ'. 
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nOlia3aH0, YTO BJlElRHIle IIOABWKHOti CTeHHLl B Typ6yJIeHTHOM nOTOKe 3aBMCIlT OT OTHO- 

CHTeJIbHOti BeJlHYUHbl np0113BOJlbHOti @JlyKTya~l%lf, Bbl3BaHHOfi Typ6yJleHTHOCTbl0, M IIe- 

pmo~mecKoi3 #nytmyaqmf, reHeptfpyeMoi% ~I~~BLIESH~~~ cTeHKo&. 

OIIHCbIBaeTCH 3KCIIepHMeHTajrbHaH yCTaHOBKa, B KOTOpOtt Il3MepHJIaCb HHTeHCHBHOCTb 

Typ6yJIeHTHOCTLZHa CTeHKe,KoJIe6aHlte KOTOpOtBhI3bIBaeTCTOJFiyIO BOJIHy&WHOli 2 @$Ma 
lfaM1~114Ty~Ofi +O,025.&u~enp1~ TaKOi6o~b~oZtA~llHeIIMa~O~aM~~MTyAeKo~e6~~~aFIc~ 

(:TeHKa BbI3bIBaeT OYeBllAHOe yBeJIWleHHe Typ6yJIeHTHOrO KaCaTejIbHOrO HanpRxteHEiR. 

~OCKO~bKyaHajIIlT~YeCKOepeLUeHHe3T~XypaBHeHll~HeB03MO)flHO,o6paIll;aeTc~BHLlM~HLle 

Ha~icno~b30Bafme(beHoMeHo~ormecKoro MeToxa ,7211x C.zyYa~ ~O~BH~H~IX CTeHOK. 


