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Abstract—Approximate theoretical solutions have been obtained for laminar flow in a conduit with
wavy moving boundaries. The results predict the data of Laird quite well and demonstrate that the
oscillation of the boundary contributes to the apparent increased friction. This suggests that studies
of the interface in two phase flow concern themselves not only with the wave profiles but with the wave
frequency as well.

The effect of a moving boundary in turbulent flow is shown to depend on the relative magnitude of
the random fluctuation due to turbulence and the periodic fluctuation induced by the moving boundary.

Experimental equipment is described in which turbulent intensity measurements were made across a
wall oscillating with a standing wave having a length of 2 in and an amplitude of +0-025. Even with
this large wavelength and low amplitude, the oscillating wall caused increased apparent turbulent shear
stress.

Because analytical solution of the equations of motion are not possible, an extension of the pheno-

menological method to the case of moving walls is outlined.

NOMENCLATURE

u, o, w, time average velocities in coordinate

A, R7; directions;
do, maximum deviation of radius from tw, Dw, time average velocities at the wall;

R (see Fig. 7); u',v', w', fluctuating velocities in coordinate
C, numerical constant in equation (18a); directions;
F, frequency; ut, dimensionless velocity parameter,
Fr, energy dissipated due to friction for /(70 ge/p)V2;

flow across a rough surface; i#lavg,  time average velocity, averaged over
Fs, energy dissipated due to friction for the flow area;

flow across a smooth surface; v, fluctuating velocity at wall;
Jms friction factor for moving wall; Wa, work required to form surface area;
s, friction factor for stationary wall; X, axial coordinate;
ges constant in Newton’s second law; y+, dimensionless distance parameter,
gL, acceleration of gravity; T08c\V2 y
h, coordinate in direction of gravity; ( P ) v

T

ks wave number = a Greek symbols
m, numerical constant in equation (18a); €, numerical constant in equation (18b);
n, damping constant [see equation (10)]; €R, eddy viscosity due to random turbu-
P, time average local pressure; lent fluctuations;
R, radius on non-oscillating wall (see €p» eddy viscosity due to periodic fluctua-

Fig. 7); tions induced by wall motion;
Re, Reynolds number; A, wavelength;
r, radial coordinate; v, kinematic viscosity;
1, time, 2, density;
u, v, w, instantaneous velocity in coardinate To, wall shear stress;

directions; w, angular frequency = 2= F.
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INTRODUCTION

THE siMmULTANEOUS flow of gas and liquid in a
conduit is accompanied by rates of momen-
tum transfer (and frictional pressure drop) which
are considerably higher than experienced
when gas flows alone. In recent years consider-
able effort has been devoted to explaining these
higher transport rates. A few of the many
examples can be found in references [1-3]. A
survey of these approaches appears in reference
{4]. The essence of the problem is to find a model
describing the mechanism which is physically
realistic and which is not so complex as to
render the mathematics intractable.

SOME POSSIBLE MECHANISMS

Two phase flow is characterized by the presence
of an interface. Except for bubble flow at
low gas rates and completely dispersed liquid
flow at very high gas rates, these interfaces are
of substantial continuous area and are covered
by waves. Figure | shows the surface of a liquid
film in the presence of a very low countercurrent
gas flow rate relative to the liquid surface. This
surface is tremendously complex and experi-
mental observations [5, 6], reveal that with
strong concurrent gas flows the complexity
increases. Now we need to determine the mech-
anism(s) by which the interface makes its
influence known to the gas phase. Several
possibilities exist, some or all of which may act
simultaneously. It is of interest to examine a
number of these, looking at each as if it was
acting alone.

The gas does work on the interface to form surface

Figure 2 demonstrates this mechanism. If the
mechanical energy balance is applied to the gas
flowing across a solid and liquid surface, respec-
tively, the two equations shown in Fig. 2 are
obtained. For equivalent conditions of kinetic
and potential energy changes the measured
pressure drop for flow across the fluid interface
will be larger by the amount of work done by the
gas to maintain the wave motion, even if it is
assumed that the frictional dissipation across the
liquid and the solid is the same. There is at
present no way to separate the work and friction
terms experimentally; thus, when experimental
pressure drop is used to calculate friction, a
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F1G. 2. Mechanical energy balance for flow across solid
and fluid interfaces.

higher apparent friction loss is obtained. Should
this be an important mechanism, then an under-
standing of the higher momentum losses must
come about by experimental and analytical
studies of interfacial surface renewal rates and
the way in which flow rate, fluid properties and
conduit geometry influence these rates.

If one uses experimental pressure drop data
for two phase flow and at equivalent gas rates
calculates the single phase pressure drop, it is
possible to estimate the magnitude of the work
term and explore its reasonableness. Such calcu-
lations show that, in order to account for the
higher pressure drop by a work mechanism, it
would be necessary that the interfacial surface
be renewed 500 to 1000 times per second.
an unreasonably high rate. Thus it is necessary
to conclude that the energy required to form
surface cannot possibly make a major contribu-
tion to the apparent increased friction in two
phase flow.

The liquid interface appears as a rough solid wall
to the moving gas

This mechanism is demonstrated in Fig. 3.
Assume that the liquid could be solidified in such
a way that the interfacial solid roughness is
identical in shape to the wave profile on the
surface of the liquid. Since it is known that flow
across rough surfaces is accompanied by higher
frictional energy loss than flow across smooth
ones, the measured pressure drops (as given by
the mechanical energy balance in Fig. 3) will be
higher. Should this model be a valid one, then
it is necessary to concentrate on a study of the



Fic. 1. Wave motion on a vertical film surface.
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Fi1G. 3. Mechanical energy balance for flow across solid
smooth and solid rough interfaces.

interfacial profile. Then this profile can be
duplicated in solid surfaces and the influence
of the roughness on increased friction studied in
single phase experiments, a much simpler experi-
mental medium.

The form drag due to the waves undoubtedly
contributes significantly to the increased pressure
drop. However, several studies [7, 8], have
attempted to characterize the interface by an
equivalent roughness. While the results of any
one experiment can be used to calculate an
equivalent roughness for that condition, it has
not been possible to generalize this approach
to predict results at other conditions where the
interfacial roughness appeared essentially the
same. This suggests that the roughness heights
alone are not sufficient.

Waves on the interface cause velocity fluctuations
in the gas phase normal to flow which change
the shear stress

Figure 4 illustrates this mechanism. The
equation shown is the two dimensional form of
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F1G. 4. Boundary conditions in the equation of motion
for flow across smooth and wavy moving surfaces.
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the Navier Stokes equation. (While this equation
for laminar flow is included for illustrative pur-
poses, the reasoning applies as well to turbulent
flow, as will be shown below.) When the gas
flows across a non-moving solid boundary (the
horizontal solid line), at the boundary the time
average velocity in the direction of flow at the
wall, iy, and the time average velocity normal
to the mean flow at the wall, #,, are both zero.
Now consider a wavy fluid interface. The solid
wavy line represents the fluid interface at one
instant of time and the dotted wavy line is the
same interface an instant later after the wave has
travelled along the surface. For this case the
velocities, #, and #,, are now not zero and
depend on the degree of oscillation of the inter-
face. One can expect the equations of motion
to predict a different value for pressure drop
when these boundary conditions are not zero
(two phase flow) than when they are zero (single
phase flow).

There is interesting experimental evidence
that this is a significant mechanism. In 1954,
Laird [9] constructed an apparatus in which he
pumped water in laminar flow through a flexible
tube and imposed oscillations on the wall at a
number of frequencies, amplitudes and wave-
lengths. A schematic diagram of the Laird
equipment is shown in Fig. 5. The wall was
oscillated between positions shown as solid and

Fi1G. 5. Laird’s oscillating tube wall.

dotted, respectively, while liquid flowed as
shown. Typical experimental results are shown
in Fig. 6. It is clear that the oscillation of the wall
had a marked effect on the friction. Laird pre-
sented no theoretical analysis for these observa-
tions. This reasoning and Laird’s data suggests
that before we can understand the effect of the
interface on pressure drop we must study not
only the profile but the oscillation of the inter-
face as well.
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Fic. 6. Typical experimental results of Laird.

OBJECTIVES OF THIS STUDY

In this paper we will present an analysis which
explains the Laird data, thus demonstrating that,
at least in laminar flow, mechanism c, discussed
above is important. This analysis is then extended
to turbulent flow and the factors which must be
determined experimentally to complete the
understanding are evolved. The experimental
equipment designed and constructed to explore
this effect for turbulent flow is discussed and
preliminary experimental results presented.

LAMINAR FLOW IN A TUBE WITH WALLS
OSCILLATING AS AXISYMMETRIC STANDING
WAVES

Assume that, due to the oscillation of the wall,
fluctuating velocity components are induced in
the axial and radial directions. The instantaneous
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velocity components of the flow, u, v and w,
can be expressed as

U= u-~u
voes oo (1)
W= g o w

i, o, w are mean values, and u', ¢’, w’ are the
oscillating components. In the equations which
follow, x is the axial and r the radial coordinate.

We assume that w = 0 and that the oscillation
of the wall does not induce fluctuation in the
circumferential direction so that w' = 0. Sub-
stituting equation (1) into the Navier-Stokes
equations in cylindrical coordinates and taking
time averages gives:

16(ras) o2 16p 020 )
r o or &x pix cre ;
[P G
led o2 1 o(ru’v’)  2(u'?) ;
rér | ox? rooor  ext ;
Lo(ri?)  e(av) 16p 2P )
S A = Vi T [
r ocr CX pcr ors | .,
‘ — )
1é6 v 92 Le(ro?) &'y’ |
rorex 2| e e ax J
a1 ea(rd)
Fooote 4
cx o oroor
From (1) and (4) we also get
cu' 1 o(re!
N f( ) = 0 (3)

éx r or

If we consider the case where # is small, then
from the equation of continuity ¢i/cx is also
small and ¢2i/6x2, &(rad)/or are negligible com-
pared to ¢%i/dr?. Taking all this into account,
equations (3) and (4) can be simplified to:

1ép o 1 e
oo (e
pox ort " orer)
1o(rut)  eu ,
: ( S (7,) (6)
I C'F cX-
1ep 1 [er®y  cuv
0=— ?13 - (“;”'” ) TR (7)
por r\ cr ax
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In these equations, there exist more unknowns,
i.e.p, @, v'2, u, v, than are equations; i.e. [5, 6, 7).
It is necessary to seek further relations in order to
solve the problem. We accomplish this by first
finding an expression for the velocity fluctuation
at the oscillating boundary, v,,, and then suggest-
ing a manner in which this is damped as it pro-
gresses into the fluid.

i
W\/

1 _1 e x

FiG. 7. Coordinates of the wave.

Consider the system as shown in Fig. 7. The
oscillating wall of the tube can be described by

®
At the wall the component of fluctuating velocity
in the radial direction can be obtained by differ-
entiating equation (8).

[ ar [
w9

ro = R + ao cos kx sin wt

v = @, w COS kx COS wt

®
It is likely that this displacement damps in some
manner as the disturbance approaches the center
of the tube. The damping equation assumed is
given by (10).

- (10)
where 4 = R—*. With this equation it is possible
to find the product rv’ and its r derivative and
so, from equation (5), obtain an equation for
local velocity fluctuation, #’, as a function of
the two position variables and time.

r\® ,
P (_) v, = I* Ao w cos kx cos wt

w=—(m4+ l)ilér”~1 wdo sin kx
cos wt + Ci(r) (11)

The constant of integration, Ci(r) can be found
from the condition, at x =0, =/k, 27/k, ...
u’ = 0, therefore Ci(r) =0

A
Ww=—@m+1 Zr"—l wa, sin kx cos wt

(12)

From these equations the time average of the two
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fluctuating terms which appear in equation (6)
can be calculated:

o(ru'v') (n+1) .
TR A% w? a2 r2n-1lgin 2kx (13)
auTz — (n + 1)2 2 2 02 g1 2n—2
i TA w? a2 sin (2kx) r2n (14)
Substituting equations (13) and (14) into

equation (6) gives, after integration with respect

(n+1)
8kvn?

For this integration suitable boundary con-
ditions are: at r = 0, di/dr = O for all values of
x and at r = R, i = O for all values of x.

Equation (15) then gives the distribution of
time average velocity radially. The average
velocity over the tube and the pressure gradient
related to this average is:

R

1
ﬁavg=;ﬁéj al2rrdr =

1]

A% w? a? (R — r2%) sin 2kx  (15)

A2 2 42
8:;(:1" R2n sin 2kx

The maximum value of —dp/dx is:
8}3 . 8[1- ﬁavg
~ () w0

For stationary smooth walls

w? aE

) a9

8an ﬁa,\'g

() i
éxls ~  R2

Therefore the ratio of the friction factors of the
moving to the smooth wall becomes:

f _ —(@plox)m _ :
Js —(9p/0x)s

~F2a? AR
I+ =50 ke D

Equation (17) would enable us to calculate the
friction factor for laminar flow inside oscillating
tubes if n was known.
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From equation (10) it is seen that » is a
quantity describing the damping of the fluctuation
induced by the wall motion. As r increases, the
wall fluctuation is suppressed more rapidly.
Therefore n is smaller for larger amplitude and
larger frequency. Also # would be greater for
larger kinematic viscosity or smaller Reynolds
number. The calculation of n for a number of
conditions of Laird’s data shows that these
qualitative observations are valid and the
principal variables which determine n are:

n = ¢(Re, F, as, R, A)

It is possible to form a number of characteristic
dimensionless groups which include the variables.
These include

Fai )\ R FaoR FR® A

v a v v KR
A study of these groups in relation to the Laird
data suggests they combine in the form

v elraca) () ow |- m (207

(18a)

This gives, when substituted into equation (17)

7;:! e (5": R:)gexp [m (Fa:_R)Z] (18b)

Equation (18b) shows that the friction factors
for moving and stationary boundaries are
related through the frequency, displacement
amplitude and non-oscillating radius, combined
in a dimensionless oscillation Reynolds number.
It is of interest to note that, expressed in log
form:

[ Fao R\?
log fm = log {64 + 64 € (% ~)

Fao R
8] g n

this equation predicts a log linear friction factor
Reynolds number with a slope of minus one.
Thus the f vs. Re curves should be parallel to
and displaced from the single phase curve,
exactly as seen in the Laird data, Fig. 6.

‘When the Laird data at minimum displacement
value, ao/R = 0-043, are used to evaluate the

exp [m
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constants ¢ and m and then equation (18b}
is used to predict the results for all of the Laird
data, the results shown in Fig. 8 are obtained.
The solid lines represent the prediction of the
theoretical equation. The points represent the
experimental data. Agreement is quite satis-
factory.

i
RVTNE oo

fm
Y fs

8O0

Frequency, coun's/mun

FiG. 8. Comparison of theory—<(solid lines) with data of
Laird—(points).

TURBULENT FLOW ACROSS A WAVY
MOVING BOUNDARY

Theory

The mechanism of momentum transfer and
friction for turbulent flow across plane, non-
moving boundaries has, as yet, not yielded to
rigorous analysis. Because of the impossibility
of solving the Reynolds equations without
added independent equations to describe the
turbulent shear stress, the most fruitful
approaches have been phenomenological ones.
Recently, Konobeev and Zhavaronov [10}
applied simplified turbulent models to flow
across stationary rough surfaces with good
success. It is apparent that the case of a moving
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boundary would be of significantly increased
complexity.

One way to view the behavior of the fluid is
to assume that the instantaneous velocity can
be expressed in terms of a time average value,
a random fluctuation due to turbulence and a
periodic fluctuation due to the wall oscillation.

u=a-+u+u’
v=0+0v +v'
w=w-+w 4 w"’ 19)

If these definitions are substituted into the
Navier-Stokes equations (following Reynolds)
and time averages taken, then equations for the
oscillating wall case can be developed. For
steady conditions and negligible acceleration,
the x direction equation becomes:

a ur o)
- 25
0 L TrVia—p [ ox % +
a(u ) aullz 8”” rr a(ull II)
oz ox oy oz

(20)
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In arriving at equation (20) it was assumed that
there is zero correlation between any of the
random and periodic terms, an assumption that
seems completely justified in view of the com-
pletely different nature of the two fluctuations.

In the three dimensional case, then, each
equation has three stress terms due to the periodic
component in addition to the usual three
turbulent stress terms. While it is clear that no
serious attempt need be made to solve these
questions, it can be seen that the movement of
the wall is important only to the extent that this
motion induces periodic fluctuations which are
of the order of (or larger than) the random
fluctuations.

Experimental equipment

In order to make a direct measurement of
relative magnitude of the periodic and turbulent
fluctuations, an oscillating wall channel shown
schematically in Fig. 9 was constructed. This
channel has the dimensions of 18 in by 1-5 in by
5-5 ft. The top and three sides were made of
clear plastic and the bottom surface was formed

Channel top plastic

‘~ U400 D000 R

-— Flow

Channel bottom
rubber sheet

Cronkshaft

Side view

Isometric

Connecting plates

Special bearings

F1G. 9. Schematic views of the oscillating wall channel.
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by a rubber sheet. To the bottom surface 52
aluminum plates were glued 1 in apart. These
connecting plates were attached to a connect-
ing rod using specially constructed bearings.
The camshaft was driven by a 2 h.p. motor
through a pulley system and an electrical variable
speed drive. The camshaft was especially
fabricated to give a maximum wave amplitude of
0-025 in. This system thus generated a standing
wave with a wavelength of 2 in, a wave amplitude
of 0-025 in and an oscillation frequency varying
from zero (no cam rotation) to 1200 rev/min.
Air was provided by a rotary compressor and
after being filtered and metered, flowed into a 6 ft
entrance section, identical in all respects to the
test section except that the rubber surface was
replaced by a solid plastic sheet similar to the
other walls. Turbulence measurements were
made with a Flow Corporation constant current
hot wire anemometer, Model HWB-2. Readings
of turbulence intensity and cross correlations
were made on a true random signal voltmeter
designed for 16 s averaging of the signal.
Additional details of the equipment, the measur-
ing technique and preliminary data appear in
reference 11.

Typical experimental results

Figure 10 shows the measured relative turbu-
lent intensities for a stationary wall with no
fixed deflection and for a wall oscillating at 800
cycles/s. The effect is small but distinct and
reproducible. For these experiments the gas
Reynolds number was approximately 20 000.
Equipment modifications are now under way
to permit measurements for smaller wavelengths

x 800 rev/min
<& Stationary

7).
‘U
7

7y

5
O

2 Fixed wall
" oung wol i

TF T L& 7z ¢ 17 fé £f 0B 0
yok
Fi1G. 10. Distribution of turbulence intensity.
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and larger amplitudes, conditions more nearly
representing liquid surfaces in two phase flow.
It thus appears that the movement of the wall
induces added stress in the turbulent stream
which is of the order of the random turbulent
stresses themselves. In the experiments reported
here this periodic contribution was small.
However, as wavelength of the surface is
decreased and wave amplitude increased, these
effects can be expected to be more significant.

A phenomenological approach

The problem of solving the Reynolds equations
can be approached phenomenologically by
assuming the existence of an eddy diffusion
coeflicient for the periodic contribution to shear
similar to that used for the random fluctuation.
The one dimensional momentum equation can
then be written as

0 op N &0 e
T ey TH ay? TPy y

D ‘
[(61; -+ €p) (;] (21)
Here e 1s the random contribution to the eddy
viscosity, while €, is the periodic term. It seems
reasonable to assume that the turbulent term
is unaffected by the wall motion (there being no
correlation between random and periodic modes)
and thus it should be possible to use existing
relationships that have proved satisfactory. For
the region near the wall, Deissler [12] has
suggested a useful equation

ep == MRy

where » is a constant determined from experi-
ment.

In the presence of wall oscillations the total
eddy viscosity, er, could be written as:

€ n? i Y -+ oep

If it is further assumed that the effects of the
oscillations are most significant near the wall
and that the major effect is to displace the
velocity distribution curve due to its effect at
the boundary, €, can be considered constant
and a modified Deissler expression for velocity
distribution near the wall can be obtained.
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Résumé—Des solutions théoriques approchées ont été obenues pour 1’écoulement laminaire dans une
conduite avec des parois en mouvement ondulatoire. Les résultats prévoient trés bien les résultats
expérimentaux de Laird et démontrent que l'oscillation de la paroi contribue & 'augmentation
apparente du frottement. Ceci suggére que les études de I'interface dans I'écoulement diphasique sont
concernées non seulement par les profils d’onde mais également par la fréquence de I’onde.

On montre que 'effet d’une frontiére mobile en écoulement turbulent dépend de la grandeur relative
de la fluctuation aléatoire due a la turbulence et de la fluctuation périodique provoquée par la fron-
tiére mobile.

On décrit I'équipement expérimental avec lequel les mesures d’intensité de turbulence ont été
faites de long d’une paroi oscillante avec une onde stationnaire de longueur d’onde égale a 5 cm et
d’amplitude égale a 0,625 mm. Méme avec cette grande longueur d’onde et cette faible amplitude, la
paroi oscillante causait une augmentation de la contrainte de cisaillement turbulente apparente.

Parce que la solution analytique des équations du mouvement n’est pas possible, on a ébauché une

extension de la méthode phénoménologique au cas des parois mobiles.

Zusammenfassung—Fiir laminare Stromung mit einer sich fortbewegenden Grenzlinie in einer Rohr-
leitung erhielt man theoretische Naherungsiésungen. Die Ergebnisse bestitigen die Werte von Laird
sehr gut und zeigen, dass die Schwingungen der Grenzlinie zur offensichtlich erhéhten Reibung
beitragen. Dies legt nahe, dass sich Studien an einer Trennfliche in einer Zweiphasenstromung nicht
nur mit dem Profil der Welle, sondern auch mit ihrer Frequenz zu befassen haben.

Die Wirkung einer sich bewegenden Grenzlinie in turbulenter Strémung hiingt, wie gezeigt wird,
von der relativen Grosse der zufilligen Anderung in einem Masse ab, das der Turbulenz und der
periodischen Schwankung, hervorgerufen von der sich bewegenden Grenzlinie, entspricht.

Die experimentelle Vorrichtung, in der Messungen der Turbulenzstirke ldngs einer Wand aus-
gefiihrt werden, die wie eine stehende Welle von 5,08 cm Lénge und 40,0635 cm Amplitude schwingt,
wird beschrieben. Sogar bei dieser grossen Wellenlédnge under der niedrigen Amplitude verursachte
die schwingende Wand eine offensichlich turbulente, erhéhte Scherbeanspruchung. Weil eine ana-
Iytische Lésung der Bewegungsgleichungen nicht méglich ist, wird eine Erweiterung der phincmeno-

logischen Methode fiir den Fall sich bewegender Winde umrissen.

Annoramua—Iloxyyuens nprbamKeHHble TeOPeTHIECKHE PEIIeHNA YPABHEHAN 1A JTaMUHAD-
HOT0 HOTOKA B TypGe ¢ BOJHHMCTHMHA HOJBMIXHEIMHA CTeHKAMu. Pesynbrarel pewmenuit momT-
BepAnaM fNanHee Jleapna m moKasasm, 4TO KojeGaHHe CTEHKH CIOCOGCTBYET OUEBHTHOMY
yBeauuennio conporusienus. Iloatomy ucciefoBaHWA TPaHHLUEL pasgeia B ABYX(asHOM
IOTOKe OXBATEIBAIOT HE TOJBLKO BOJHOBHIE MPOPMIN, HO U BOJHOBYIO YacTOTY.
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Ilorazano, 4T0 BANAHUE MOABUKHON CTEHKM B TypOYJEHTHOM IMOTOKe 3aBMCHT OT OTHO-
CUTEIbHON BENMYMHE NPOU3BOILHON (IYKTyaumsu, BHB3BAHHON TYpOYNeHTHOCTbLIO, M ITe-
puonuyeckoit QIYKTyanuu, resepupyemMoit MOABMKHON CTEHKOMH.

OnunceBaeTcA SKCHEPHMEHTAJABHAA YCTAHOBHA, B KOTOPOIl M3MepANAch HHTEHCUBHOCTEH
TYpOYAeHTHOCTH HA CTeHKe, KojebaHue KOTOPO BEI3LIBAET CTOAYYI0 BOJIHY ANAMHON 2 moiiMa
n amnumTypoit +0,025. Iaxe npu raxoil 60Ol AMHE U MAXOK aMILIUTYAe Konebmoinascs
CTeHKA BHIBHIBAET OUEBMJIHOE YBeJNuYeHHe TYypPOYNeHTHOTO KAcaTeIbHOTO HAIDSHKEeHHS.

MockonbKy aHAIMTHYECKOE PEIICHNE STHX YPABHEHU He BOBMOKHO, 06PaINaeTCH BHNMaHUeE

Ha HCHONbL30BaHNE (PEHOMEHOIOTHYECKOTO MEeTOJA sl CAy4Yas IMOIBHAKHBIX CTEHOK.



